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In the framework of real-time Green’s functions, the general kinetic equations are investigated in a first-
order gradient expansion. Within this approximation, the problem of the reconstruction of the two-time corre-
lation functions from the one-time Wigner function was solved. For the Wigner function, a cluster expansion
is found in terms of a quasiparticle distribution function. In equilibrium, this expansion leads to the well-known
generalized Beth-Uhlenbeck expression of the second virial coefficient. As a special case, theT-matrix ap-
proximation for the self-energy is investigated. The quantum kinetic equation derived thus has, besides the
~Markovian! Boltzmann collision integral, additional terms due to the retardation expansion which reflect
memory effects. Special interest is paid to the case that bound states exist in the system. It is shown that the
bound state contribution, which can be introduced via a bilinear expansion of the two-particleT matrix, follows
from the first-order retardation term in the general kinetic equation. The full Wigner function is now a sum of
one function describing the unbound particles and another one for the bound state contribution. The latter two
functions have to be determined from a coupled set of kinetic equations. In contrast to the quantum Boltzmann
equation, energy and density of a nonideal system are conserved.@S1063-651X~96!11009-6#

PACS number~s!: 05.30.2d, 05.20.Dd, 82.20.2w

I. INTRODUCTION

The kinetic equations which are mostly used in the analy-
sis of nonequilibrium properties of plasmas, semiconductors,
and nuclear matter are the famous Boltzmann equation or
other Boltzmann-like kinetic equations such as the Landau
equation and the Lenard-Balescu equation. Though the
Boltzmann equation is one of the fundamental equations in
statistical physics, as it describes the irreversible relaxation
to stationary states and because it is the basis of the transport
theory, this equation has many principal shortcomings. Two
of these are~i! the Boltzmann equation is valid on time
scales larger than the correlation timetcorr only, and~ii ! the
Boltzmann equation conserves the kinetic energy or the qua-
siparticle energy only, instead of the total~kinetic plus po-
tential! energy.

The second point especially is a serious drawback in
strongly correlated many-particle systems. In such systems,
thermodynamic functions, as, for example, the internal en-
ergy, are essentially determined by correlation effects. The
Boltzmann equation describes the relaxation towards the sta-
tionary states under the condition of the conservation of the
mean kinetic energy. This is unphysical. Any kinetic theory
of strongly correlated systems has to describe this relaxation
to the nonideal thermodynamic properties. Now it is well
known since papers by Ba¨rwinkel @1,2# and Klimontovich
@3# that this defect of Boltzmann-type equations is essentially
connected with the approximations with respect to the time.
Boltzmann-like kinetic equations are approximations local in
time ~Markovian equations! when derived from the most
general nonlocal form of kinetic equations given by Prigog-
ine @4#, Resibois@5#, Zwanzig @6#, Kadanoff and Baym@7#
and others. In the latter papers, attempts were done to over-
come the shortcomings, and generalizations of Boltzmann-

like Markovian equations were given. For further references
see, e.g.,@8–13#.

A very powerful method for this purpose is the real-time
Green’s function technique, which allows to describe the
properties of strongly correlated system in equilibrium as
well as in nonequilibrium in a consistent manner. Within the
framework of real-time Green’s functions, the equilibrium
and nonequilibrium properties of a many-particle system
are determined by the two-time correlation func-
tions 6 ig,(1,18)5^C1(18)C(1)& and ig.(1,18)
5^C(1)C1(18)& with the abbreviation 15r 1 ,s1

3 ,t1. These
functions contain the statistical and spectral information on
the system. Fort15t18 the correlation function is just the
single-particle density matrix. The difference ofg. andg,

gives the spectral function.
In thermodynamic equilibrium, it is sufficient to deter-

mine the spectral properties only because the statistical op-
erator is known. In order to take into account correlation
contributions, an approximation beyond the quasiparticle ap-
proximation is necessary. In@14#, an expansion with respect
to the damping was performed and a generalized Beth-
Uhlenbeck@15# expression for the density was obtained. This
is possible for the total energy, too. The aim of this paper is
to derive kinetic equations on the same level of approxima-
tion. That means that the conserved quantities describe non-
ideal quantum systems up to the order of a generalized sec-
ond virial coefficient.

The known problem to get kinetic equations from Green’s
functions is the fact that the equation for the~single-time!
density matrix or the Wigner function, which follows from
the dynamic equation forg,, is not closed. The reason is that
both of the two-time correlation functionsg, andg. arise
on the right hand side. Further these equations are nonlocal
in space and time. In this paper, we will consider the equa-
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tions in first-order gradient expansion.
In order to get a kinetic equation in explicit form, one has

to solve still two problems:~i! The self-energyS has to be
determined as a functional ofg: by perturbation theory.
Here the standard two-particle collision approximation
(T-matrix approximation! will be used. ~ii ! The two-time
correlation functions have to be reconstructed from the
single-time single-particle density matrix. This is the so-
called reconstruction problem, which was addressed first by
Lipavský, Špička, and Velicky´ @16#.

The general solution for the reconstruction of theg:

functions by the single-particle density matrix was given in
@16# by a complicated integral equation. Usually only the
generalized Kadanoff-Baym~GKB! ansatz g,5gRf,

1 f,gA is used. This ansatz is valid only in quasiparticle
approximation, but here a kinetic theory will be considered
which goes beyond this approximation.

The plan of this paper is outlined as follows. Starting
from the basic equations, the nonequilibrium spectral func-
tion is considered in an extended quasiparticle approximation
in Sec. II. With the solution of the reconstruction problem
~Sec. III!, we derive, from the Kadanoff-Baym equations, the
first-order gradient form of the kinetic equation for the
Wigner distribution. In Sec. IV, we use the binary collision
approximation forS:, the first-order gradient expansion for
the optical theorem and the solution of the reconstruction
problem in first-order gradient expansion. In this way we
obtain nonideality corrections to the Boltzmann equation.
We will show for a nondegenerate quantum system that the
kinetic equations derived give correct conservation laws for
the number density and the energy density in the binary col-
lision approximation. In Sec. V, systems will be considered
in which bound states are possible. It will be shown that
bound state contributions occur in the first-order retardation
term in the general kinetic equation.

II. EXTENDED QUASIPARTICLE APPROXIMATION
FOR THE NONEQUILIBRIUM SPECTRAL FUNCTION

Within the framework of real-time Green’s functions, the
nonequilibrium properties of a many-particle system are de-
termined by the two-time correlation functions

6 ig,~1,18!5^C1~18!C~1!&,

ig.~1,18!5^C~1!C1~18!& ~2.1!

with the abbreviation 15r1 ,t1 ~the spin is suppressed in the
following!. C1 andC are creation and annihilation opera-
tors, respectively. The brackets mean the averaging with the
density operator of the system. The single-particle Wigner
distribution function is given by

f ~p,R,T!5E dv

2p
~6 i !g,~p,v,R,T! ~2.2!

with g,(p,v,R,T) being the Fourier transform of
g,(1,18)5g,(r ,t,R,T) with respect to the variables
r5r12r18 and t5t12t18 , respectively.R and T are deter-
mined byR5(r11r18)/2 andT5(t11t18)/2.

The dynamic equations for the nonequilibrium correlation
functions g, and g. were derived first by Kadanoff and

Baym @7# and by Keldysh@17#. A derivation, starting from
the Martin-Schwinger-Hierarchy of equations of motion for
the n-particle Green’s functions@18,19# and using the con-
dition of weakening of initial correlations was given in@20#.
In a convenient way, this system of equations is written in
the following form @21,22#:

S i ]

]t1
1

¹1
2

2mDg:~1,18!2E
2`

`

d1̄SR~1,1̄!g:~ 1̄,18!

5E
2`

`

d1̄S:~1,1̄!gA~ 1̄,18!,

S i ]

]t1
1

¹1
2

2mDgR/A~1,18!2E
2`

`

d1̄SR/A~1,1̄!gR/A~ 1̄,18!

5d~1218!, ~2.3!

whereS is the self-energy function.
The equation for the Wigner function follows from~2.3!

and its adjoint equation in the caset15t185T, and for a
spatially homogeneous system it reads

] f ~p,T!

]T
5E

2`

T

dt̄@S,~T, t̄ !gA~ t̄,T!1SR~T, t̄ !g,~ t̄,T!

2g,~T, t̄ !SA~ t̄,T!2gR~T, t̄ !S,~ t̄,T!#. ~2.4!

This kinetic equation for the Wigner function is not closed
because the single-particle Green’s function arises on the
right hand side. To get a closed equation one would like to
have an expression of the Green’s function in terms of the
Wigner function. This is also called the reconstruction prob-
lem and was addressed by Lipavsky´ et al. in @16#. We will
come back to this point in Sec. III.

The Kadanoff-Baym equations are nonlocal equations in
space and time. Applying the so-called gradient expansion
@7,22# to ~2.3! and the adjoint equation, one obtains

$RegR21,ig,~. !%2$ iS,~. !,RegR%5g,S.2g.S,,
~2.5!

where the quantities are functions ofp,v,R,T, and Poisson
brackets were defined by

$A,B%5
]A

]v

]B

]T
2

]A

]T

]B

]v
2

]A

]p

]B

]R
1

]A

]R

]B

]p
. ~2.6!

The equation for the retarded~advanced! Green’s functions
on the same level of approximation reads

S v6 i«2
p2

2m
2SR/A~p,v,R,T! DgR/A~p,v,R,T!51.

~2.7!

Here the first derivatives cancel each other.
At this point, one has to note that the set of Eqs.~2.5! and

~2.7! determines the statistical and the spectral properties of
the particles as well. It turns out that the spectral properties
are described by the spectral function, defined by

a~p,v,R,T!5 i ~g.2g,!5 i ~gR2gA!. ~2.8!
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In the gradient approximation given by~2.5! and ~2.7!, we
get

a~p,v,R,T!

5
G~p,v,R,T!12«

@RegR
21

~p,v,R,T!#21@ 1
2 G~p,v,R,T!1«#2

,

~2.9!

where the dampingG5 i (S.2S,)522 ImSR was intro-
duced. Expression~2.9! has the same shape as the equilib-
rium one, but it is valid locally atR,T. The main contribu-
tion to the spectral function comes from frequencies where
we have RegR

21
50, i.e., from solutions of the quasiparticle

dispersion relation

E~p,R,T!5
p2

2m
1ReS~p,v,R,T! uv5E~p,R,T! . ~2.10!

Following Krempet al. @14#, one can, in the case that the
quasiparticle concept may be applied, expand the spectral
function with respect to the small dampingG, with the result

a~p,v,R,T!52pdS v2
p2

2m
2ReS~p,v,R,T! D

2S P8
1

v2
p2

2m
2ReS~p,v,R,T!D

3G~p,v,R,T!, ~2.11!

with P8(1/x)5 lim«→0(]/]x)@x/(x
21«2)# being the deriva-

tive of the principal value.
The real part of the retarded self-energy is connected with

the imaginary part via the dispersion relation

ReS~p,v,R,T!5SHF~p,R,T!1PE dv̄

2p

G~p,v̄,R,T!

v2v̄
.

~2.12!

Thus, to be consistent, the quasiparticle renormalization fac-
tor is expanded, and we get

a~p,v,R,T!52pd„v2E~p,R,T!…

3S 11
]

]v
ReS~p,v,R,T! uv5ED

2S ]

]v
P

1

v2EDG~p,v,R,T!. ~2.13!

This approximation for the spectral function fulfills the sum
rule.

The question arises which approximations have to be
done in the kinetic equation~2.5! to be consistent with the
approximation~2.11!. This will be essential in what follows
in the next chapters. Subtracting the kinetic equations~2.5!
for g. andg, from each other, one gets

$RegR21,a%2$G,RegR%50. ~2.14!

One can show that this equation remains true for the spectral
function in approximation~2.11! if the real part of the re-
tarded Green’s function is considered in the limitG50:

RegR~p,v,R,T!5P
1

v2
p2

2m
2ReSR~p,v,R,T!

. ~2.15!

Thus we will use in the following this approximation for
RegR.

III. RECONSTRUCTION OF THE CORRELATION
FUNCTIONS

In this section, the connection between the correlation
functionsg, andg. and the density matrix in Wigner rep-
resentation shall be investigated. Starting point is the gener-
alized kinetic equation~2.5!. For the sake of clarity, we drop
for a moment the derivatives with respect top andR. The
derivatives in Eq.~2.5! can be rearranged to give

]

]T F ig:2
] ReSR

]v
ig:1 iS:

] RegR

]v G1
]

]v F] ReSR

]T
ig:

2 iS:
] RegR

]T G5g,S.2g.S,. ~3.1!

Taking approximation~2.15! for RegR, one gets

]

]T F S 12
] ReSR

]v D S ig:1 iS:P8
1

v2
p2

2m
2ReSRD G

1
]

]v F ] ReSR

]T S ig:1 iS:P8
1

v2
p2

2m
2ReSRD G

5g,S.2g.S,. ~3.2!

The structure of this equation now suggests to define a new
quantityQ: by

iQ:5 ig:1 iS:P8
1

v2
p2

2m
2ReSR

, ~3.3!

which leads to

]

]T F S 12
] ReS

]v D iQ:G1
]

]v F] ReS]T
iQ:G

5Q,S.2Q.S,. ~3.4!

In order to find the physical meaning of the special correla-
tion functionsQ: we introduce the spectral function accord-
ing to the usual definition by

AQ5 i ~Q.2Q,!52pdS v2
p2

2m
2ReSRD . ~3.5!

To get the last line, Eqs.~2.8! and ~2.11! were used. From
the representation~3.5!, it turns out that the quantityQ de-
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scribes quasiparticles@23,24#. It is useful to introduce a qua-
siparticle distribution function by

6 iQ,~p,v,R,T!52pdS v2
p2

2m
2ReSRD f Q~p,R,T!

6X~p,v,R,T!. ~3.6!

ForQ. we get

iQ.~p,v,R,T!52pdS v2
p2

2m
2ReSRD @16 f Q~p,R,T!#

1X~p,v,R,T! ~3.7!

with a functionX(p,v,R,T) arbitrary so far.
The determination of the quantityX is the point where the

problem of an ansatz arises. As stated above, the correlation
functions Q: describe undamped quasiparticles. If these
functions are considered in the time domain, an ansatz simi-
lar to the generalized Kadanoff-Baym ansatz can be used:

6Q,~ t,t8!5GQ
R~ t,t8! f Q~ t8!2 f Q~ t !GQ

A~ t,t8! ~3.8!

with f Q andGQ
R/A being the quasiparticle distribution func-

tion and the quasiparticle propagators, respectively. Intro-
ducing the difference timet and the centered timeT in the
usual way and performing an expansion with respect to the
retardation in the quasiparticle distribution, we get after Fou-
rier transformation

6 iQ,~v,T!5AQ~v,T! f Q~T!2
]

]v
ReGQ

R~v,T!
]

]T
fQ~T!.

~3.9!

The correlation functionQ. is given in a similar way by

iQ.~v,T!5AQ~v,T!@16 f Q~T!#2
]

]v
ReGQ

R~v,T!

3
]

]T
@16 f Q~T!#. ~3.10!

Comparison with~3.6!,~3.7! gives

X~v,T!52
]

]v
ReGQ

R~v,T!
]

]T
@6 f Q~T!#. ~3.11!

If we insert ~3.9! in ~3.3!, the following expression in terms
of the quasiparticle distribution function can be derived for
g,

6 ig,~v,T!52pdS v2
p2

2m
2ReSRD f Q~T!

2P8
1

S v2
p2

2m
2ReS D ~6 i !S,~v,T!

2P8
1

v2
p2

2m
2ReS~v!

]

]T
@6 f Q~T!#.

~3.12!

A similar expression follows forg.. As can be seen from
this expression, the correlation functions consist of a pole
contribution and an off-pole part.

Now it is easy to obtain the full Wigner function. Integra-
tion of ~3.12! with respect tov and expansion of the renor-
malization factor gives

f ~p,R,T!5 f Q~p,R,T!S 11
]

]v
ReS~p,v,R,T! uv5ED

2E dv

2p
P8

1

S v2
p2

2m
2ReS D ~6 i !S,~v,T!.

~3.13!

If the dispersion relation~2.12! is applied, we get

f ~p,R,T!5 f Q~p,R,T!

1E dv

2p
P8

1

~v2E!
$ iS.~p,v,R,T! f Q~p,R,T!

2~6 i !S,~p,v,R,T!@16 f Q~p,R,T!#%. ~3.14!

With Eqs. ~3.13! and ~3.14!, interesting relations were ob-
tained which make it possible to determine the Wigner func-
tion f from the quasiparticle distribution functionf Q. The
first term on the right hand side describes ideal quasiparticles
and the second one stands for the scattering contribution of
quasiparticles. Here, the self energy functionsS have to be
expressed as a functional off Q.

In order to get an equation forf Q, one can use Eq.~3.2!
together with~3.12!. As the quantityX ~3.11! is of first order
in the derivatives~it consists of a collision term!, it can be
neglected on the left hand side of~3.2!. The d function in
~3.12! leads to the quasiparticle energies~2.10!. Then ReS
does not depend on the variablesR or p explicitly only but
also implicitly viav5E(p,R,T) @7#. It follows

2pd~v2E!F ]

]T
1

]E

]p

]

]R
2

]E

]R

]

]pG f Q~p,R,T!

5~6 i !S,~p,v,R,T!ig.~p,v,R,T!

2 iS.~p,v,R,T!~6 i !g,~p,v,R,T!. ~3.15!
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Integration with respect tov gives

F ]

]T
1

]E

]p

]

]R
2

]E

]R

]

]pG f Q~p,R,T!

5E dv

2p
@~6 i !S,~p,v,R,T!ig.~p,v,R,T!

2 iS.~p,v,R,T!~6 i !g,~p,v,R,T!#

5E dv

2p
@~6 i !S,~p,v,R,T!iQ.~p,v,R,T!

2 iS.~p,v,R,T!~6 i !Q,~p,v,R,T!#. ~3.16!

Finally, if we take into account the reconstruction formulas
~3.9! and ~3.10! in Eq. ~3.16!, a closed kinetic equation for
the quasiparticle distribution functionf Q can be obtained.
Then, the full Wigner distribution function could be calcu-
lated from~3.12! using~3.16!. But, using a cluster expansion
in terms of undamped quasiparticles, we get the well-known
secular divergent terms. This is simply to be seen if one uses
the reconstruction formulas~3.12! for the correlation func-
tion g: in the skeleton diagrams of the self energy~e.g., the
simplest formS:5V12g1

:g2
:V12g2

"). Then there appear di-
vergent terms corresponding to successive binary collisions.

But, there is the other possibility to find a kinetic equation
from which the Wigner distribution can be determined in a
direct way. To do that, we have to express the correlation
functiong. andg, in terms of f instead off Q. This can be
done in the way that the quasiparticle distribution function in
~3.12! is substituted by the full Wigner function with the help
of Eq. ~3.13!. In this way, the divergencies are compensated.

6 ig,~v,T!52pd~v2E! f ~T!2P8
1

v2E

]

]T
f ~T!

2P8
1

~v2E!
~6 i !S,~v,T!

12pd~v2E!E dv̄

2p
P8

1

~v̄2E!
~6 i !

3S,~v̄,T!. ~3.17!

Here, we have to keep in mind that the difference of the time
derivatives off Q and f is of higher order.

Now we consider the Kadanoff Baym equations in first-
order gradient expansion in the form~3.2!. Integration with
respect tov leads to

] f

]T
2

]

]TE dv

2p F ~6 i !g,
] ReSR

]v
2~6 i !S,

] RegR

]v G
56E dv

2p
~g,S.2g.S,!. ~3.18!

Using the dispersion relations for Reg and ReS, this equa-
tion can be written as

] f

]T
5I 0~p,T!1I 1~p,T! ~3.19!

with

I 0~p1T!5E dv

2p
@~6 i !S,~vT!ig.~vT!

2 iS.~vT!~6 i !g,~vT!# ~3.20!

and

I 1~p1T!5
]

]TE dv1dv2

~2p!2
P8

1

v12v2

3@ iS.~v1T!~6 i !g,~v2T!

2~6 i !S,~v1T!ig.~v2T!#. ~3.21!

Equation ~3.21! represents a kinetic equation for the full
Wigner distribution function. On the right hand side, the col-
lision integrals are given in terms of the one-particle corre-
lation functionsg: and the self-energy functionsS:. The
latter are, again, functionals of theg:. Therefore, using the
reconstruction formula~3.17! in I 0 and I 1, one gets a closed
kinetic equation for the Wigner distribution functionf . In
comparison to the kinetic equation~3.16! for the quasiparti-
cle distribution function, we have in~3.18! the additional
collision integralI 1 which reflects nonideality corrections.

Explicit expressions for the quantities to be conserved at
the level of approximation applied for the derivation of the
kinetic equation follow from Eqs.~3.12!–~3.17!. Using rela-
tion ~3.14!, we get for the density

n~R,T!5E d3p

~2p!3
f ~p,R,T!5E d3p

~2p!3
f Q~p,R,T!

1E dvd3p

~2p!4
P8

1

v2E
$ iS.~p,v,R,T! f Q~p,R,T!

2~6 i !S,~p,v,R,T!@16 f Q~p,R,T!#%, ~3.22!

and with ~3.17!, we get for the energy

^E&5E dv

~2p!

d3p

~2p!3

v1
p2

2m

2
~6 i !g,~p,v,R,T!

5E d3p

~2p!3
p2

2m
f ~p,R,T!

1
1

2E d3p

~2p!3
ReS~p,E,R,T! f ~p,R,T!

1
1

2E dvd3p

~2p!4
P

1

~v2E!
~6 i !S,~v,T!, ~3.23!

were we used the relation (v2E)(]/]v)P@1/
(v2E)#52P@1/(v2E)#.

With the dispersion relation for ReS, there follows

^E&5E d3p

~2p!3
p2

2m
f ~p,R,T!

1E d3p

~2p!3
SHF~p,R,T!

2
f ~p,R,T!

1
1

2E dvd3p

~2p!4
P

1

E2v
$ iS.~p,v,R,T! f ~p,R,T!

2~6 i !S,~p,v,R,T!@16 f ~p,R,T!#%. ~3.24!
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Of course, in order to derive explicit kinetic equations
from ~3.19!, one has to choose appropriate approximations
for the self-energy functionsS:. Using standard approxima-
tions in I 0, we can derive the well-known kinetic equations
of Landau@25# ~first Born approximation!, Boltzmann~bi-
nary collision approximation!, and Lenard and Balescu
@26,27# ~random phase approximation for the screening!. But
the kinetic equation~3.19! is very general and can serve as a
starting point to go beyond these well-known approxima-
tions. First, cluster expansions forS: can be used inI 0 to
derive kinetic equations including three-particle scattering
and reaction processes@20#. But, in spite of these higher-
order approximations, the resulting kinetic equations remain
valid for ideal systems only, i.e., ideal conservation laws
only are fulfilled by these equations. To obtain kinetic equa-
tions for nonideal quantum systems, the retardation termI 1,
along with the corresponding gradient expansion correction
of S in I 0, must be taken into account. This will be shown in
the next section considering the frequently used binary col-
lision approximation.

IV. BINARY COLLISION APPROXIMATION

The binary collision approximation is a standard approxi-
mation of many-particle theory. The self-energy in this ap-
proximation reads with help of theT matrix

S:~r1t,r18t8!5E d3r 1d
3r̄ 2^r1r2uT:~ t,t8!u r̄2r18&

3~6 i !g"~ r̄2t8,r2t !. ~4.1!

The connection of theT matrix with the two-particle Green’s
function in binary collision approximation is given in the
Appendix together with various useful relations. In this sec-
tion, we will assume that no bound states are possible in the
system. The Fourier transform of~4.1! is ~for spatially ho-
mogeneous systems!

S:~p1v,T!5E d3p2
~2p!3

dv̄

2p
^p1p2uT:~v1v̄,T!up2p1&

~6 i !g"~p2v̄,T!. ~4.2!

Again we will use an operator notation in which~4.2! reads

S:~v,T!56 i Tr2E dv̄

2p
T12

:~v1v̄,T!g"~v̄,T!,

~4.3!

with Tr2 denoting the trace with respect to the second par-
ticle.

Now the collision integralsI 0 andI 1 can be expressed by
theT matrices

I 05Tr2E dv

2p
$ iT,~v,T!iG12. ~v,T!2 iT.~v,T!iG12, ~v,T!%,

~4.4!

and

I 15
]

]T
Tr2E dv1dv2

~2p!2
P8

1

v12v2
$ iT.~v1 ,T!iG12, ~v2 ,T!

2 iT,~v1 ,T!iG12. ~v2 ,T!%, ~4.5!

where the two-particle quantityG12: was introduced by

G12:~v,T!5 i E dv̄

2p
g:~v2v̄,T!g2

:~v̄,T!. ~4.6!

The T: matrices are given by the generalized optical theo-
rem

T:~ t,t8!5E
2`

`

dt̄ dt̃ TR~ t, t̃ !G12:~ t̃, t̄ !TA~ t̄,t8!. ~4.7!

Thus they can be expressed in terms of the correlation func-
tions G: and the retarded and advancedT matricesTR/A

which describe the in-medium scattering. The latter have to
be determined from a generalized Lippmann-Schwinger
equation~A5!.

Our aim is to find the complete first-order corrections to
the local approximations of the collision integral~usual
Boltzmann collision integral!. In the collision integralI 0, we
have to consider first-order contributions inG: @using the
reconstruction formula~3.17! in ~4.6!# and in the optical
theorem as well; see Appendix.

If a nondegenerate system is considered, contributions of
the kind (]/]T)TR/A can be neglected. Then it follows from
~A9!

iT:~v,T!5TR~v!2pd~v2Ē12!F̄12
:TA~v!

2TR~v!P8
1

v2Ē12

]F̄:

]T
TA~v!1 ipd~v2Ē12!

3H ]TR~v!

]v

]F̄:

]T
TA~v!

2TR~v!
]F̄:

]T

]TA~v!

]v J . ~4.8!

Here we haveF12
. 5(16 f 1)(16 f 2)'1, F12

, 5 f 1f 2 and
E125E11E2. The first right hand side term of~4.8! is the
well known local version of the optical theorem. The next
contribution is the first-order gradient correction.

The collision termI 0 is easily obtained now as

I 05I B2Tr2H TR~E12!P8
1

E122Ē12

TA~E12!
dF̄,

dT

2TR~Ē12!P8
1

E122Ē12

TA~Ē12!
dF,

dT
2 ipd~E122Ē12!

3S ]TR

]E12
TA2TR

]TA

]E12
D dF̄,

dT J ~4.9!

with I B being the quantum Boltzmann collision integral
given by the expression local in time.

The collision integralI 1 contains already a time deriva-
tive. That is why the quantities in it can be taken in the
lowest order, and we get
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I 15
]

]T
Tr2T

R~Ē12!P8
1

E122Ē12

TA~Ē12!@ F̄
.F,2F̄,F.#.

~4.10!

The additional terms toI B are essentially determined by the
‘‘off-shell’’ T matrix. For this quantity, we may derive a
useful relation from the so-called differentiated optical theo-
rem @see Appendix, especially~A14!#. Using the dispersion
relation for ReT(E), the following equation may be derived:

TR~Ē12!P8
1

E122Ē12

N̄12T
A~Ē12!

5TR~E12!P8
1

E122Ē12

N̄12T
A~E12!

22pd~E122Ē12!N̄12Im~TRTA8! ~4.11!

with 2 Im(TRTA8)5 i (TR8TA2TRTA8) andN12516 f 16 f 2
which is nowN12'1.

Now we denote all corrections beyond the Boltzmann col-
lision integral by I R, and write the kinetic equation in the
shape

d f

dT
5I B~p1!1I R~p1!. ~4.12!

The Boltzmann collision integral reads

I B5E d3p2d
3p̄1d

3p̄2
~2p!9

z^p1p2uT~E121 i«!up2p1& z2

32pd~E122Ē12!~ f̄ 1 f̄ 22 f 1f 2!. ~4.13!

The first-order retardation terms collected inI R(p1) are
given by

I R~p1!5
d

dTE d3p2d
3p̄1d

3p̄2
~2p!9 H @ z^p1p2uT~Ē12!up1p2& z2

1 z^p1p2uT~E12!up1p2& z2#P8
1

E122Ē12

22pd~E122Ē12!Im~TRTA8!J S dF,

dT
2
dF̄,

dT D .
~4.14!

Now we show that there is an interesting relation between
I B and I R. For this reason we define

I B~«!5E d3p2d
3p̄1d

3p̄2
~2p!9

E dv

2p

2«

~E2v!21«2

3
2«

~Ē2v!21«2
z^p1p2uT~v1 i«!up2p1& z2

3~ F̄12
, 2F12

, !. ~4.15!

Then we see easily

I B~p1!5 lim
«→0

I B~p1 ,«!,

and with

lim
«→0

d

d«

«

x21«2
5P8

1

x
,

we get

I R5
1

2

d

dT

d

d«
I B~«!U

«→0

. ~4.16!

The kinetic equation in first-order retardation has the com-
pact shape

d

dT
f ~p1T!5S 11

1

2

d

dT

d

d« D I B~p1 ,«,T!U
«→0

. ~4.17!

The investigation of conservation laws, inherent in the
kinetic equation, is a useful means in order to control the
level of approximation@28–30#. We expect conservation
laws for the total number densityn(R,T) ~3.22!, for the mo-
mentum and for the total energy^E& ~3.23!. It is well known
that the Markovian kinetic equation conserves only the aver-
age kinetic energy, what is insufficient for strongly corre-
lated systems. This motivates the inclusion of retardation ef-
fects.

Bärwinkel @2# determined retardation corrections to the
Boltzmann collision integral, which consist of two contribu-
tions @formula ~13! of @2##. One of those contributions@the
term determined byE(p1p2p18p28)# coincides with ours
~4.14!. The second term denoted byO(p1p2p18p28) should not
appear. This is due to the fact that Ba¨rwinkel used the
Kadanoff-Baym ansatz instead of~3.12!, thus the retardation
was considered only partly. Consequently, not the total en-
ergy is conserved but only part of it.

Let us now consider this problem from the point of view
of the generalized kinetic equation investigated in the previ-
ous sections. Now we consider explicit expressions for the
density. In binary collision approximation, we get using
equations of the previous sections,

n~R,T!5E d3p

~2p!3
f Q~p,R,T!1E d3p1d

3p2d
3p̄1d

3p̄2
~2p!12

3P8
1

E122Ē12
^p1p2uT~Ē121 i«!up2p1&

3^p1p2uT~Ē122 i«!up2p1&@ F̄12
, 2F12

, #. ~4.18!

Using ~4.11! and the symmetry with respect to the inter-
changep1 ,p2↔p̄1 ,p̄2, we have only on-shell quantities

n~R,T!5E d3p

~2p!3
f Q~p,R,T!

1E d3p1d
3p2d

3p̄1d
3p̄2

~2p!12
ipd~E122Ē12!

3H ]

]E
@^p1p2uT12

R ~E!up2p1&#^p1p2uT12
A ~E!up2p1&

2^p1p2uT12
A ~E!up2p1&

]

]E

3@^p1p2uT12
A ~E!up2p1&#J F12

, . ~4.19!
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The first term on the right hand side may be considered as
the density of quasiparticles whereas the second is the cor-
relation part

n~R,T![nQ~R,T!1ncorr~R,T!. ~4.20!

Expression~4.19! represents a cluster expansion for the den-
sity in binary collision approximation.

Let us now show that the densityn(R,T) given by~4.18!
or ~4.19!, respectively, is conserved by the kinetic equation
~3.19!. It follows from ~3.19! with ~3.20! and ~3.21! after
integration with respect top1,

d

dTE d3p1
~2p!3

f ~p1 ,R,T!5
dn

dT
5

d

dT
@nQ~R,T!1ncorr~R,T!#

5E d3p1
~2p!3

I 01E d3p1
~2p!3

I 1.

~4.21!

Extracting first-order retardation terms fromI 0, we have

d

dT
n~R,T!5E d3p1

~2p!3
I B1E d3p1

~2p!3
I R. ~4.22!

It is well known since Boltzmann that the first integral van-
ishes. From the explicit expression forI R given by~4.14!, it
follows using relation~4.11! for the connection between off-
shell and on-shell quantities that the second integral van-
ishes, too. Thus we have

d

dT
~nQ1ncorr!5

dn

dT
50 . ~4.23!

This is the conservation law for the thermodynamic quantity
‘‘density of the nonideal system.’’ The corresponding con-
sideration in a paper recently published@31# differs from
ours. In@31#, the retardation correction was reduced only to
I 1, and the quantity* f (p)@d3p/(2p)3# was identified with
the quasiparticle density what is incomplete.

Let us now consider the energy conservation. This prob-
lem is more complex. We start with the construction of an
equation for the average energy~3.23! or ~3.24!. We consider
again Eq.~4.12!, multiply it with the kinetic energy, and take
the trace over 1. Symmetrization with respect to 1 and 2, and
1̄ and 2̄, leads to the simple result for the derivation of the
kinetic energyT,

]

]T
^T&52

1

4

]

]T
Tr12F uTR~Ē!u2P

1

E2Ē
~2F12

, 22F̄12
, !G .

~4.24!

The mean potential energy is given by the second and third
terms of the right hand side of~3.24!. If the self-energy is
expressed in terms ofT matrices, we have for the potential
energy~cf. @32#!

^V&5^V&HF1
1

2
Tr12F uTR~Ē!u2P

1

E2Ē
~F12

, 2F̄12
, !G

~4.25!

and we get

]

]T
^T&52

]

]T
^V&, ~4.26!

i.e.,

]

]T
^H&5

]

]T
^T1V&50 , ~4.27!

which means conservation of the total energy.

V. SYSTEM WITH BOUND STATES

The problem of bound states in kinetic theory is the sub-
ject of many papers, e.g.,@29,33–36#. On the time scale of
two-particle scattering processes, bound states are long-
living entities. Thus, e.g., one has to account for the bound
state part of the two-particleT matrix in the kinetic equation.

We recall the expression forS in the binary collision
approximation,

S:~p1v,T!5E d3p2
~2p!3

dv̄

2p
^p1p2uT:~v1v̄,T!up2p1&

3~6 i !g"~p2v̄,T!. ~5.1!

Bound state contributions are possible if the energy argu-
ment of theT matrix is taken off the energy shell of two free
particles. TheT matrix and the two-particle correlation func-
tion are connected by

T:~v,T!5 iVg12
:~v,T!V. ~5.2!

The two-particle correlation function can have a scattering
part and a bound state part:g125g12

scatt1g12
bound. It is pos-

sible to use a bilinear expansion@37,38# for the two-particle
Green’s function. The time dependence is considered in the
local approximation,

g12
:~v,T!5(

K
uCK&^CKuNK

:2pd~v2EK! ~5.3!

with wave functionuCK& and energy eigenvaluesEK follow-
ing from the effective Schro¨dinger equation with the time
argument being suppressed,

@EK2e~p1!2e~p2!#^p1p2uCK&2@12 f ~p1!2 f ~p2!#

3E dp̄1dp̄2
~2p!6

^p1p2uVup2p1&^p1p2uCK&50. ~5.4!

This equation is not Hermitian but one can construct a bior-
thonormal systemuC̃K& from
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@EK2e~p1!2e~p2!#^p1p2uC̃K&2E dp̄1dp̄2
~2p!6

^p1p2uVup2p1&

3@12 f ~ p̄1!2 f ~ p̄2!#^p1p2uC̃K&50 ~5.5!

with

^cK8uC̃K&5dKK8 (
K

uC̃K&^cKu51 . ~5.6!

Further it holds that

^p1p2uC̃K&5
FK

12 f ~p1!2 f ~p2!
^p1p2uCK& ~5.7!

with

F K
215E dp̄1dp̄2

~2p!6
^CKup̄1p̄2&

1

12 f ~ p̄1!2 f ~ p̄2!
^p1p2uC̃K&.

~5.8!

NK
, and NK

. are connected byNK
.2NK

,5FK . Setting
NK

,5NKFK , the quantityNK is the distribution function of
the two-particle bound and scattering states, respectively. In
equilibrium, we have

NK5
1

eb~EK2ma2mb!21
. ~5.9!

In the kinetic equation, the bound state contribution ap-
pears in the collision integralI 1, which can be written in the
form

I 15
]

]TE dp2
~2p!3

3H S ]

]v
Rê p1p2uTR~v!up2p1& D

uv5e~p1!1e~p2!

f 1f 2

2E dv

2p
^p1p2uT,@v1e~p2!#up2p1&P8

1

v2e~p1!

3~12 f 12 f 2!J . ~5.10!

In the second contribution at the right hand side of Eq.
~5.10!, the T matrix has to be taken off-shell. Inserting the
bilinear expansion for theT matrix, we can separate the
bound state part and get

I 15I scatt
1 1

]

]TE dp2
~2p!3(jP ^p1p2uC jP&^C̃jPup2p1&Nj~P!

~5.11!

with j ,P being the set of quantum numbers of bound states.
The termI scatt

1 is the same as in Sec. IV.
We introduce the distribution function of the unbound

particles by

f F~p1!5 f ~p1!2E dp2
~2p!3(jP ^p1p2uC jP&

3^C̃jPup2p1&Nj~P!. ~5.12!

For nonequilibrium systems, the distribution functionsf F

andNj are independent. The temporal change of the distri-
bution function of bound states, which is due to three-
particle processes, has to be calculated from a separate ki-
netic equation. Such an equation can be derived from the
second equation of the Martin-Schwinger hierarchy and
reads@36,39,40#

d

dT
Nj~P,T!5I j

scatt1I j
rearr1I j

react . ~5.13!

Thus, in order to fulfill, e.g., the conservation of the total
density, for the self-energy in the zeroth-order termI 0, a
cluster expansion has to be used which includes also three-
particle processes. The kinetic equation forf F reads then

d

dT
f F~p1 ,T!5I B1I 3

01I R ~5.14!

with I 3
0 being a Markovian three-particle collision integral

including reactions. The temporal change of the correspond-
ing densitynF5*@dp/(2p)3# f F(p) is given by a rate equa-
tion,

d

dT
nF5E dp

~2p!3
I 3
05(

j
a jnFnj2b jnF

3, ~5.15!

where for the densitynj5*@dP/(2p)3#Nj (P) of bound
states in levelj holds

dnj
dT

5b jnF
32a jnFnj1(

j̄

nFn j̄ K j̄ j2nFnjK j j̄ . ~5.16!

It follows that the total densityn5nF1( jnj is conserved.
Note thatnF is given by@cf. ~3.13!#

nF~R,T!5E d3p

~2p!3
f Q~p,R,T!

1E d3p1d
3p2d

3p̄1d
3p̄2

~2p!12
ipd~E122Ē12!

3H ]

]E
@^p1p2uT12

R ~E!up2p1&#

3^p1p2uT12
A ~E!up2p1&2^p1p2uT12

A ~E!up2p1&
]

]E

3@^p1p2uT12
A ~E!up2p1&#J f ~p1! f ~p2!. ~5.17!

The first term on the right hand side may be considered as
the density of quasiparticles whereas the second is the cor-
relation part~scattering states!. Thus we have

n~R,T!5nQ~R,T!1ncorr~R,T!1(
j
nj~R,T!. ~5.18!
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Expression~5.18! represents a cluster expansion for the den-
sity in binary collision approximation including bound states.

This type of relation for thermodynamic quantities is well
known in the case of equilibrium quantum statistics
@15,37,41–44#. The connection between such thermody-
namic expressions and Eq.~5.18! becomes obvious if we
expand the first right hand side contribution of~5.18!, i.e.,
the quasiparticle distributionf (p2/2m1ReS), with respect
to ReScorr. For ReScorr we use the approximation

ReScorr~E!5Tr2ReT12~E11Ē2! f 2~Ē2!. ~5.19!

Further, we introduce the partial wave expansion for theT
matrix @32#. We get the generalized Beth-Uhlenbeck formula

n5E d3p

~2p!3
f HF~p!1(

l
E d3P

~2p!3
~2l 11!F12

~21! l

2s11 G
3H(

n
nBSEnl 1

P2

2M D 1
1

pE0
`

dE nBS p22m1
P2

2M

1D11D2D dd l ~E!

dE J . ~5.20!

Here D1,2 are single-particle energy shifts,nB is the Bose
function, andd l is the scattering phase shift. In thermody-
namic equilibrium, Eq.~5.20! determines completely the
thermodynamic behavior of the system in the binary colli-
sion approximation.

VI. CONCLUSIONS

The present paper gives a derivation of a rather general
kinetic equation in the framework of Green’s functions tech-
niques. Starting from the general Kadanoff-Baym equations,
we did a first-order gradient expansion. In the ‘‘Poisson
brackets’’ containing RegR, we made an approximation with
respect to the dampingG leading to a linearized spectral
function having thus a quasiparticle and an off-pole part.
Within this approximation, the correlation functions have a
corresponding structure. In order to achieve kinetic equa-
tions, one has to solve the problem to express the correlation
functions in terms of the distribution function. In detail, the
differences between the Wigner and the quasiparticle distri-
bution function were investigated.

Explicit collision integrals were formulated in the binary
collision approximation. Besides the usual Boltzmann inte-
gral, there occur additional contributions which account for
retardation effects. In contrast to the usual Markovian
Boltzmann equation, the retardation effects lead to conserva-
tion laws of number density and energy; especially, the latter
goes beyond the kinetic energy.

Bound states come into the play via the off-shell contri-
butions of the retardation part of the collision integral. We
want to mention that bound states do not occur in balances of
the usual Boltzmann equation.
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APPENDIX: T-MATRIX APPROXIMATION

The two-particle Green’s functiong12 is given in ladder
approximation by

ig12
:~ t,t8!5G12:~ t,t8!1 i E

2`

`

dt̄G12R ~ t, t̄ !Vg12
:~ t̄,t8!

1 i E
2`

`

dt̄G12:~ t, t̄ !Vg12
A ~ t̄,t8!, ~A1!

where the abbreviation

G12:~ t,t8!5 ig1
:~ t,t8!g2

:~ t,t8! ~A2!

was introduced. Bound states are not considered here. The
retarded~advanced! two-particle function is determined by

ig12
R/A~ t,t8!5G12R/A~ t,t8!1 i E

2`

`

dt̄G12R/A~ t, t̄ !Vg12
R/A~ t̄,t8!.

~A3!

If the T matrix is defined by

T:~ t,t8!5 iVg12
:~ t,t8!V, ~A4!

TR/A~ t,t8!5Vd~ t2t8!1 iVg12
R/A~ t,t8!V,

its equation of motion follows from~A1!,

T:~ t,t8!5E
2`

`

dt̄VG12R ~ t, t̄ !T:~ t̄,t8!

1E
2`

`

dt̄VG12:~ t, t̄ !TA~ t̄,t8!, ~A5!

TR/A~ t,t8!5Vd~ t2t8!1E
2`

`

dt̄VG12R/A~ t, t̄ !TR/A~ t̄,t8!,

~A6!

which gives

T:~ t,t8!5E
2`

`

dt̄ dt̃ TR~ t, t̃ !G12:~ t̃, t̄ !TA~ t̄,t8!. ~A7!

The latter equation can be considered as a generalized optical
theorem.

It is of special interest to have the Fourier transform of
~A7!. The two-time quantities in~A7! do not only depend on
the time differences. Thus, the Fourier transformT:(v,T)
up to first order in the derivatives is given by

T:~v,T!5TR~v,T!G:~v,T!TA~v,T!1
i

2 FTR]G:

]v

]TA

]T

2TR
]G:

]T

]TA

]v
1

]TR

]v

]G:

]T
TA2

]TR

]T

]G:

]v
TA

1
]TR

]v
G:

]TA

]T
2

]TR

]T
G:

]TA

]v G . ~A8!
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A further important relation is that for the derivative of
the real part ofT(z). Starting from the expression for the
imaginary part~optical theorem in lowest order with respect
to time derivatives!

ImT~v1 i e,T!52
i

2
@T~v1 i e,T!2T~v2 i e,T!#

52
i

2
@T.~v,T!2T,~v,T!#

5T~v1 i e,T!ImG~v1 i e,T!

3T~v2 i e,T! ~A9!

and keeping in mind

]

]v
F~v1 i e!5

]

] i e
F~v1 i e!, ~A10!

which implies

]

]v
ReF~v1 i e!5

]

]e
ImF~v1 i e!, ~A11!

]

]v
ImF~v1 i e!52

]

]e
ReF~v1 i e!, ~A12!

we get for the derivative of the real part

]

]v
ReT~v1 i e!5T

] ReG
]v

T*1 i
]T

]v
ImGT*2 iT ImG

]T*

]v
.

~A13!
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