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In the framework of real-time Green’s functions, the general kinetic equations are investigated in a first-
order gradient expansion. Within this approximation, the problem of the reconstruction of the two-time corre-
lation functions from the one-time Wigner function was solved. For the Wigner function, a cluster expansion
is found in terms of a quasiparticle distribution function. In equilibrium, this expansion leads to the well-known
generalized Beth-Uhlenbeck expression of the second virial coefficient. As a special caBan#tex ap-
proximation for the self-energy is investigated. The quantum kinetic equation derived thus has, besides the
(Markovian Boltzmann collision integral, additional terms due to the retardation expansion which reflect
memory effects. Special interest is paid to the case that bound states exist in the system. It is shown that the
bound state contribution, which can be introduced via a bilinear expansion of the two-partieltix, follows
from the first-order retardation term in the general kinetic equation. The full Wigner function is now a sum of
one function describing the unbound particles and another one for the bound state contribution. The latter two
functions have to be determined from a coupled set of kinetic equations. In contrast to the quantum Boltzmann
equation, energy and density of a nonideal system are cons¢B8/EN63-651X96)11009-9

PACS numbg(s): 05.30—-d, 05.20.Dd, 82.26-w

I. INTRODUCTION like Markovian equations were given. For further references
see, e.9.[8-13|.

The kinetic equations which are mostly used in the analy- A very powerful method for this purpose is the real-time
sis of nonequilibrium properties of plasmas, semiconductorsireen’s function technique, which allows to describe the
and nuclear matter are the famous Boltzmann equation d¥roperties of strongly correlated system in equilibrium as
other Boltzmann-like kinetic equations such as the Landawvell as in nonequilibrium in a consistent manner. Within the
equation and the Lenard-Balescu equation. Though thfamework of real-time Green’s functions, the equilibrium
Boltzmann equation is one of the fundamental equations ind nonequilibrium properties of a many-particle system
statistical physics, as it describes the irreversible relaxatio’® determined by the two-time correlation func-
to stationary states and because it is the basis of the transpd@ns ~ *ig=(1,1)=(¥"(1")¥(1)) and ig7(1,1)
theory, this equation has many principal shortcomings. Two=(¥(1)¥ *(1")) with the abbreviation %r,,s} t;. These
of these are(i) the Boltzmann equation is valid on time functions contain the statistical and spectral information on
scales larger than the correlation tim@" only, and(ii) the  the system. Fot;=t; the correlation function is just the
Boltzmann equation conserves the kinetic energy or the quasingle-particle density matrix. The difference @f andg=
siparticle energy only, instead of the tot&inetic plus po- gives the spectral function.
tentia) energy. In thermodynamic equilibrium, it is sufficient to deter-

The second point especially is a serious drawback irmine the spectral properties only because the statistical op-
strongly correlated many-particle systems. In such systemsyrator is known. In order to take into account correlation
thermodynamic functions, as, for example, the internal encontributions, an approximation beyond the quasiparticle ap-
ergy, are essentially determined by correlation effects. Th@roximation is necessary. [14], an expansion with respect
Boltzmann equation describes the relaxation towards the stée the damping was performed and a generalized Beth-
tionary states under the condition of the conservation of théJhlenbeck 15] expression for the density was obtained. This
mean kinetic energy. This is unphysical. Any kinetic theoryis possible for the total energy, too. The aim of this paper is
of strongly correlated systems has to describe this relaxatioto derive kinetic equations on the same level of approxima-
to the nonideal thermodynamic properties. Now it is welltion. That means that the conserved quantities describe non-
known since papers by Bainkel [1,2] and Klimontovich ideal quantum systems up to the order of a generalized sec-
[3] that this defect of Boltzmann-type equations is essentiallyond virial coefficient.
connected with the approximations with respect to the time. The known problem to get kinetic equations from Green’s
Boltzmann-like kinetic equations are approximations local infunctions is the fact that the equation for tfg@ngle-time
time (Markovian equationswhen derived from the most density matrix or the Wigner function, which follows from
general nonlocal form of kinetic equations given by Prigog-the dynamic equation fag=, is not closed. The reason is that
ine [4], Resibois[5], Zwanzig[6], Kadanoff and Baynj7] both of the two-time correlation functiorgs™ andg” arise
and others. In the latter papers, attempts were done to oveon the right hand side. Further these equations are nonlocal
come the shortcomings, and generalizations of Boltzmannin space and time. In this paper, we will consider the equa-
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tions in first-order gradient expansion. Baym[7] and by Keldysn17]. A derivation, starting from

In order to get a kinetic equation in explicit form, one hasthe Martin-Schwinger-Hierarchy of equations of motion for
to solve still two problems(i) The self-energy. has to be the n-particle Green’s function§l8,19 and using the con-
determined as a functional @~ by perturbation theory. dition of weakening of initial correlations was given[ia0].
Here the standard two-particle collision approximationin a convenient way, this system of equations is written in
(T-matrix approximatioh will be used. (i) The two-time the following form[21,22:
correlation functions have to be reconstructed from the )
single-time single-particle density matrix. This is the so- .9 Vi
called recgnstruction problem, which was addressed first by 'IlJrﬁ
Lipavsky, Spicka, and Velicky[16].

The general solution for the reconstruction of the _
functions by the single-particle density matrix was given in _f
[16] by a complicated integral equation. Usually only the
generalized Kadanoff-Baym(GKB) ansatz g==gRf~ ( P 2

g0%(1,1)~ f:dl_zRu,T)g%(l_,r)

T AISE(L,DgALL),

+f=<g” is used. This ansatz is valid only in quasiparticle

approximation, but here a kinetic theory will be considered

which goes beyond this approximation. =5(1-1"), 2.3
The plan of this paper is outlined as follows. Starting

from the basic equations, the nonequilibrium spectral funcwheres, is the self-energy function.

tion is considered in an extended quasiparticle approximation The equation for the Wigner function follows frof@.3)

in Sec. Il. With the solution of the reconstruction problem ang jts adjoint equation in the case=t;=T, and for a

(Sec. Il), we derive, from the Kadanoff-Baym equations, the gpatially homogeneous system it reads

first-order gradient form of the kinetic equation for the

gR/A(l,lr)_J'w dl_ER/A(l,T)gR/A(l_’lr)

Wigner distribution. In Sec. IV, we use the binary collision  gf(p,T) (7 __ _ __ R o —
approximation for2, =, the first-order gradient expansion for T f_xdt[z (T,0Q™L, T)+Z5(T,1)g~(t, T)
the optical theorem and the solution of the reconstruction

problem in first-order gradient expansion. In this way we —g=(T,HZAL,T) —gRT,OE<(t,T)]. (2.9

obtain nonideality corrections to the Boltzmann equation.

We will show for a nondegenerate quantum system that th&his kinetic equation for the Wigner function is not closed
kinetic equations derived give correct conservation laws fobecause the single-particle Green’s function arises on the
the number density and the energy density in the binary colright hand side. To get a closed equation one would like to
lision approximation. In Sec. V, systems will be consideredhave an expression of the Green’s function in terms of the
in which bound states are possible. It will be shown thatWigner function. This is also called the reconstruction prob-
bound state contributions occur in the first-order retardatiodem and was addressed by Lipavséyal. in [16]. We will

term in the general kinetic equation. come back to this point in Sec. Ill.
The Kadanoff-Baym equations are nonlocal equations in
[l. EXTENDED QUASIPARTICLE APPROXIMATION space and time. Applying the so-called gradient expansion
FOR THE NONEQUILIBRIUM SPECTRAL FUNCTION [7,22] to (2.3 and the adjoint equation, one obtains

Within the framework of real-time Green’s functions, the {RegR‘l,ig<(>>}—{i2<<>), RegR}:g<2>_ g3 ,
nonequilibrium properties of a many-particle system are de- (2.5
termined by the two-time correlation functions

where the quantities are functions pfw,R, T, and Poisson
*ig=(1,1)=(¥ (1) ¥ (1)), brackets were defined by

ig”(1,1)=(¥(1)¥* (1)) (2.1 GA B GAJB A B A B 26

with the abbreviation %r,,t; (the spin is suppressed in the
following). W and V" are creation and annihilation opera- e oqation for the retardeddvancedl Green’s functions
tors, respectively. The brackets mean the averaging with th8n the same level of approximation reads

density operator of the system. The single-particle Wigner
distribution function is given by 2

wiis—;—m—ER/A(p,w.R,T) gRA(p,w,R,T)=1.

d
f(p,R,T):f%(ii)gﬂp,w,R,T) 2.2 2.7

, < . . Here the first derivatives cancel each other.
W'<th 9 (p’g”R'T) being the Fourier transform of A this point, one has to note that the set of E@s5) and
9-(1,Y)=g"(r,t,R,T) with respect to the variables (57 getermines the statistical and the spectral properties of
r=r;—r; andt=t;—t;, respectively.R and T are deter- {he particles as well. It turns out that the spectral properties

mined byR=(ry+r7)/2 andT=(t,+1t;)/2. are described by the spectral function, defined by
The dynamic equations for the nonequilibrium correlation

functionsg~ and g~ were derived first by Kadanoff and a(p,w,R,T)=i(g"—g ) =i(gR—g"). (2.9
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In the gradient approximation given H2.5 and(2.7), we  One can show that this equation remains true for the spectral

get function in approximation2.11) if the real part of the re-

tarded Green’s function is considered in the lidi#&0:
a(p,o,R,T)

1
I'(p,w,RT)+2e Reg"(p,w,R,T)=P > . (215

- [Reg® '(p,w,R,T)2+[L(p,w,R,T)+&]?’ 0= ﬁ—ReER(p,w,R,T)
(2.9

Thus we will use in the following this approximation for
. . . R

where the dampind’=i(3~-3<)=-2 Im3R was intro- R&3"

duced. Expressiof2.9) has the same shape as the equilib-

rium one, but it is valid locally aR,T. The main contribu- lll. RECONSTRUCTION OF THE CORRELATION

tion to the spectral function comes from frequencies where FUNCTIONS

we have RgR "=0, i.e., from solutions of the quasiparticle

/ . i In this section, the connection between the correlation
dispersion relation

functionsg™ andg~ and the density matrix in Wigner rep-
p? resentation shall be investigated. Starting point is the gener-
E(p.RT)=-—+R WRT) _ 21 alized kinetic equatioii2.5). For the sake of clarity, we drop
(P ) 2m &(p.w Jlo=epr - (210 for a moment the derivatives with respectgaand R. The

. _ derivatives in Eq(2.5) can be rearranged to give
Following Krempet al. [14], one can, in the case that the

quasiparticle concept may be applied, expand the spectral d | _ JReSR _— 2aRegR d [oReSR. -
function with respect to the small dampifig with the result 37|19~ 55 19 T1ZT |t 50| a7 19
P’ =R L oo
a(p,w,R,T)=274 w—ﬁ—Ré(p,w,R,T) —iX T =g~x"—-g 2" (3.0
b 1 Taking approximatior(2.15 for RegR, one gets
- 2
p R -
L d JReX,
w 2m Rez(pvvaaT) . ( _ ) Igz_f_lzzpl 5
aT dw p
- -——RexR
xI'(p,w,R,T), (2.11 “"5m |
with P'(1/x) =lim,_ o(d/9x)[x/(x?+ &?)] being the deriva- gfoReSR)
; o +— ig=+i3<P ————
tive of the principal value. Jol|  oT p
The real part of the retarded self-energy is connected with Chal ReSR
the imaginary part via the dispersion relation
=g"X"-g73". 3.2
HE do I'(p,0,R,T)
ReX (p,w,R, T)=2""(p,R,T)+ Pf D —— The structure of this equation now suggests to define a new
W= quantity Q= by
(2.12
1
Thus, to be consistent, the quasiparticle renormalization fac- iQ<=ig=+iX*P ————, (3.3
tor is expanded, and we get w— L ReSR

2m
a(p,w,R,T)=278(w—E(p,R,T))
which leads to

Jd
X 1+£Rez(p,w,R,T)lw=E> Jd aRé, = J aReE_ =
o 7T (“W)' } ﬁ[ T Q }
—(ﬁpﬁ Ip,0,RT). (2.13 =Q“3"-Q73". (3.9

This approximation for the spectral function fulfills the sum In order to find the physical meaning of the special correla-

rule. tion functionsQ= we introduce the spectral function accord-
The question arises which approximations have to beng to the usual definition by

done in the kinetic equatiof2.5) to be consistent with the

approximation(2.11). This will be essential in what follows Ao=i(Q”—Q%)=2m5

in the next chapters. Subtracting the kinetic equati@hs) Q

for g~ andg™ from each other, one gets

p?
_ = R
=3 Re, ) (3.5

To get the last line, Eq42.8) and (2.11) were used. From
{RegR"1,a}—{I',RegR}=0. (2.14  the representatiofB.5), it turns out that the quantitQ) de-
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scribes quasiparticld®23,24). It is useful to introduce a qua- If we insert(3.9) in (3.3), the following expression in terms

siparticle distribution function by of the quasiparticle distribution function can be derived for
g<
p2 i< p2 R|¢0Q
iiQ<(p,w,R,T)=2ﬂ'5(m—%—ReER)fQ(p,R,T) *ig=(0,T)=2m6| 0= 5 —ReX"f(T)
ix(p!w!R!T)' (36) _Pr > (ii)2<((1),T)
p
For Q~ we get . ;
_p — Q
P— — Sl=1m)].
2 w5~ R&(w)

iQ>(p,w,R,T)=27r5( w— Zp——RezR)[lifQ(p,R,T)]
m (3.12

A similar expression follows fog~. As can be seen from

this expression, the correlation functions consist of a pole

. . . contribution and an off-pole part.

with a functionX(p,«,R,T) arbitrary so far. Now it is easy to obtain the full Wigner function. Integra-
The determination of the quantity is the point where the  ion of (3.12) with respect taw and expansion of the renor-

problem of an ansatz arises. As stated above, the correlatigalization factor gives

functions Q= describe undamped quasiparticles. If these
functions are considered in the time domain, an ansatz simi- o
lar to the generalized Kadanoff-Baym ansatz can be used: f(P.R.T)=f~(p,R,T)

+X(p,»,R,T) (3.7

J
1+(9—wReE(p,w,R,T)wE)

do 1
_ | B = <
+Q(t,t)=Gg(t,t)fAt) - FANGH(LL) (3.8 > F o? (D)3 (w,T).
wo—=——Re&
2m
with f< and G§* being the quasiparticle distribution func- (3.13

tion and the quasiparticle propagators, respectively. Introg e dispersion relatiori2.12) is applied, we get
ducing the difference time and the centered time& in the

usual way and performing an expansion with respect to thef(p,R,T)=%(p,R,T)
retardation in the quasiparticle distribution, we get after Fou-

rier transformation d_w 1 . ]
+f27TP (w—E){'E (p,,R,Tp,R,T)

—(£)2~(p,0,R,T[1+f%p,R,T]}. (3.19

17 J
+i0< = QT)— — R __Q
=R (@ T)=Aglw. TIX(T) o7wReGQ(w'T)t9Tf (. With Egs. (3.13 and (3.14), interesting relations were ob-
(3.9  tained which make it possible to determine the Wigner func-

tion f from the quasiparticle distribution functioff. The

first term on the right hand side describes ideal quasiparticles
The correlation functioQ~ is given in a similar way by and the second one stands for the scattering contribution of
guasiparticles. Here, the self energy functi@ghdrave to be
expressed as a functional 6%.

In order to get an equation fdf?, one can use Ed3.2)

together with(3.12). As the quantityX (3.1J) is of first order
in the derivativesit consists of a collision terjm it can be
neglected on the left hand side (8.2). The § function in

‘> Q 9 R
Q7 (0, T)=Ag(w, T)[1=f (T)]—£R£Q(w,T)

xi 1+fQ(T (3.10 (3.12 leads to the quasiparticle energigsl10. Then R&
aT[ =M. ' does not depend on the variabRsor p explicitly only but
also implicitly viaw=E(p,R,T) [7]. It follows
Comparison with(3.6),(3.7) gives |9 B9 B I,
276(w—E) (ﬂ_-i- ap R 3R 7p f2(p,R,T)

=(+i)2~(p,o,R,Nig”(p,w,R,T)

__ 9 R J +
X("”T)__%RGGQ(“”T)(TT[JQ(T)]' (319 —i3”(p,w,R,T)(=)g~(p,»,R,T). (3.19
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Integration with respect ta gives do
(pi1)= [ Sol(£D)3 “(0Dig” (oT)

2L E T
TR aRap|l PRD —i37 (0T)(2)g<(wT)] (3.20
dow , ) and
=f2—[(i|)2<(p,w,R,T)|g>(p,w,R,T)
m J dwldwz , 1

1 -
P(psT)= JT (277)2 w1~ Wy

—-i27(p,0,R,T)(x1)g~(p,w,R,T)]
X[127 (01T ()9~ (w,T)
— ()2 (01Nig7 (0] (3.2

—i27(p,0,R,T)(x)Q~(p,w,R,T)]. (316  Equation (3.2]) represents a kinetic equation for the full
Wigner distribution function. On the right hand side, the col-
lision integrals are given in terms of the one-particle corre-

_ do s < N>
_J'Z[(—I)E (pvw!R!T)IQ (pvw!R!T)

Finally, if we take into account the reconstruction formulas

(3.9 and(3.10 in Eqg. (3.16), a closed kinetic equation for lation functionsg= and the self-energy functiors=. The

the quasiparticle distribution functiof® can be obtained. latter are, again, functionals of tlge. Therefore, using the

Then, the full Wigner distribution function could be calcu- reconstruction férmul&&ﬂ) in 1° and|?, one ge1ts a closed

lated from(3.12) using(3.16. But, using a cluster expansion inetic equation for the Wigner distribution functidh In

in terms of undamped quasiparticles, we get the well-knownromparison to the kinetic equatidB.16 for the quasiparti-

secular divergent terms. This is simply to be seen if one usege distribution function, we have i63.18 the additional

the reconstruction formulag.12 for the correlation func-  collision integrall* which reflects nonideality corrections.

tion g= in the skeleton diagrams of the self enefgyy., the Explicit expressions for the quantities to be conserved at

simplest form2==V,,9795V1,95). Then there appear di- the level of approximation applied for the derivation of the

vergent terms corresponding to successive binary collisionkinetic equation follow from Eqs(3.12—(3.17). Using rela-
But, there is the other possibility to find a kinetic equationtion (3.14), we get for the density

from which the Wigner distribution can be determined in a d3

direct way. To do that, we have to express the correlationn(R,T):f —psf(p,R,T):f

functiong™ andg™ in terms off instead off . This can be (2m)

done in the way that the quasiparticle distribution function in dwdp 1

(3.12 is substituted by the full Wigner function with the help f — P ——{i37(p,w,R,T)(p,R,T)

of Eq. (3.13. In this way, the divergencies are compensated. (2) w—E

d3
(27_::;3 fQ(p,R'T)

1 4 —(£D)2%(p,0,RT[1=f(Pp,RT)]}, (3.22
N < — _ - —
*igT(oT)=278(0-B)I(T) =P =g == 1(T) and with (3.17), we get for the energy
P’ ! (£1)2%(o,T) >
— _| w 3 5m
(w—E) ' :f do d°p m
o <5> (277) (277)3 2 (il)g (p,w,R,T)
w
+2775(w—E)f—P' —— (%) dp p?
2 —E | ==
XS (@,T), (317 10 d
Here, we have to keep in mind that the difference of the time + Ef (277)3Re2(p’E*R=T)f(p'R’T)
derivatives off? andf is of higher order. s
Now we consider the Kadanoff Baym equations in first- EJ dwd Py 1 (+)3<(wT), (3.23
order gradient expansion in the forf8.2). Integration with 2) 2m)* (w—E) ~ @0 )
t tow leads t
respect taw feads fo were we used the relation w(E)(d/dw)P 1/
of 9 (do[  _IReR . .. dRegR (w—E)]=—P1/(0—E)].
T a7 2 (FDIT e (FD)E T — With the dispersion relation for Re there follows
3 2
do _ p p
:ijﬁ(g<2>_g>2<)- (3.18 <8>_fmﬁf(p'R'T)
Using the dispersion relations for Rand R&, this equa- d’p =" (p,RT)
- . 3 f(p,R,T)
tion can be written as (2) 2
af | L 1({dod®_ 1
7= (P D+1(p,T) (3.19 t3 WPE{'E (p,w,R,T)f(p,R,T)

with —(£)2(p,0,R,T[1=f(p,R,T)]}. (3.29
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Of course, in order to derive explicit kinetic equations —iT (01, NG 02, T}, (4.5
from (3.19, one has to choose appropriate approximations
for the self-energy function® =. Using standard approxima- \here the two-particle quantity;, was introduced by
tions in 1%, we can derive the well-known kinetic equations
of Landau[25] (first Born approximatioyy Boltzmann(bi- do~
nary collision approximation and Lenard and Balescu G, T)=i f 2—gz(w—w_,T)gf(w_,T). (4.6)
[26,27] (random phase approximation for the screehilgit m
the kinetic equatiori3.19 is very general and can serve as a > . . . .
starting point to go beyond these well-known approxima—TheT matrices are given by the generalized optical theo-
tions. First, cluster expansions far- can be used in° to
derive kinetic equations including three-particle scattering -
and reaction process¢20]. But, in spite of these higher- T%(t,t’)=J’ dtdiTR(t, 1) G, ) TALL). (4.7)
order approximations, the resulting kinetic equations remain —o0
valid for ideal systems only, i.e., ideal conservation laws
only are fulfilled by these equations. To obtain kinetic equa-Thus they can be expressed in terms of the correlation func-
tions for nonideal quantum systems, the retardation térm tions G= and the retarded and advanc&dmatrices TN
along with the corresponding gradient expansion correctionvhich describe the in-medium scattering. The latter have to
of 3 in 1°, must be taken into account. This will be shown in be determined from a generalized Lippmann-Schwinger
the next section considering the frequently used binary colequation(A5).

lision approximation. Our aim is to find the complete first-order corrections to
the local approximations of the collision integré@isual
IV. BINARY COLLISION APPROXIMATION Boltzmann collision integral In the collision integral °, we

_ o S “have to consider first-order contributions @F [using the
The binary collision approximation is a standard approxi-reconstruction formula3.17) in (4.6)] and in the optical
mation of many-particle theory. The self-energy in this ap-theorem as well; see Appendix.

proximation reads with help of thé matrix If a nondegenerate system is considered, contributions of
the kind (/dT) TYA can be neglected. Then it follows from
S2(ntrit) = [ Tl T ) (49)
X (£1)g= (o' ,rot). 4.1 TS (0, T)=TX(w)278(0—Ep)FLT ()
The connection of th& matrix with the two-particle Green'’s <R , JF = A . =
function in binary collision approximation is given in the Tw)P w—E;, T @) Fimd(o=Eq)
Appendix together with various useful relations. In this sec- —
tion, we will assume that no bound states are possible in the ITR(w) 9F= A
system. The Fourier transform 64.1) is (for spatially ho- X Jo  JT (@)

mogeneous systems _
IF= dTA(w)

_ d®p, do _ —TR(w) —= 4.9
E<(p1w,T)=fﬁgz(plpzﬁﬂwﬁ-wﬂﬂpzpl} JT  dw
()95 (pyw.T). (4.9  Here we haveF ,=(1=f,)(1=f,)~1, F;=f,f, and

E.,=E;+E,. The first right hand side term d#.8) is the
Again we will use an operator notation in whi¢h.2) reads  well known local version of the optical theorem. The next
contribution is the first-order gradient correction.

_ d(J)— _ L _ .. 0 : h .
S (0,T)=+i Trzf Zsz(w+w,T)g>(w,T), The collision terml® is easily obtained now as
4.3 1 dF=
19=15—Try) TYERP ———TAEw)
with Tr, denoting the trace with respect to the second par- SPRIST
tiCIe. _ 1 _ dF< _
Now the collision integral$® andI* can be expressed by —TR(Ep)P' ﬁTA(Eﬁ)d—T—imS(Elz— Eo)
the T matrices 127 E12
do aTR - JTA\ dF= i
. . . . _
I°=Tr2f E{|T<(w,T)|g12(w,T)—|T>(w,T)|912(w,T)}, X 9E 5 JEs,) dT 4.9
(4.9 _ _ S
with 18 being the quantum Boltzmann collision integral
and given by the expression local in time.
do-d 1 The collision integrall! contains already a time deriva-
1.9 01802, > o< tive. That is why the quantities in it can be taken in the
I I’2 7 {|T (a)l,T)|g]_2(w2,T)
aT (2m) w1~ W lowest order, and we get
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d — 1 — —
I1=ﬂ—TTr2TR(E12)P’ HTA(EQ)[F>F<— F<F~].
2
(4.10

12 1
The additional terms td® are essentially determined by the
“off-shell” T matrix. For this quantity, we may derive a

useful relation from the so-called differentiated optical theo-

rem[see Appendix, especialliAl4)]. Using the dispersion
relation for RE(E), the following equation may be derived:
TREWP ———NuTAED)

E12_ E12

S TREP —— NyTAEw)
Ei,—Epp

12
— 2w 8(Ejp— Erp)NIm(TRTAY)  (4.10)

with 2 Im(TRTA) =i(TR' TA-TRTA") andN,=1+f,;*f,
which is nowN,~1.

Now we denote all corrections beyond the Boltzmann col
lision integral byIR, and write the kinetic equation in the
shape

df
7= 2P +1R(py). (412

The Boltzmann collision integral reads

o | d%p,dp; %,

2m)° Kp1p2| T(Egptie)|papa)l?
><277'5(Elz_E_lz)(flfz_flfz)-

(4.13

The first-order retardation terms collected ifi(p;) are
given by

d [ d®p,d®p,d3p, —
IR(p1)= ﬁf W[ [Kp1P2l T(E1n)[P1P2) I
+Kp1p2l T(E1n)|p1p2) PP’ E_E.
12— B
27 8(Eqp— Eqp) IM(TRTA’ dF- —dF_<
mS(E1o— Eqp)Im( ) aT " ot )
(4.19
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lim— =P’
SITOd xXX+e2 X’
we get
1d d
R__ _~ _— B
IR=2 = - 1%e) » (4.16

The kinetic equation in first-order retardation has the com-
pact shape

1 1dd |B T 4.1
t ST de (p1.e,T) . (417

e—0

df T)=
ﬁ(pl)—

The investigation of conservation laws, inherent in the
kinetic equation, is a useful means in order to control the
level of approximation[28—3(. We expect conservation
laws for the total number densityR,T) (3.22), for the mo-
mentum and for the total enerdy) (3.23. It is well known
that the Markovian kinetic equation conserves only the aver-
age kinetic energy, what is insufficient for strongly corre-
lated systems. This motivates the inclusion of retardation ef-
fects.

Barwinkel [2] determined retardation corrections to the
Boltzmann collision integral, which consist of two contribu-
tions [formula (13) of [2]]. One of those contributionghe
term determined byE(p.p,p;p;)] coincides with ours
(4.14). The second term denoted BYp,p,p;p;) should not
appear. This is due to the fact thatrénkel used the
Kadanoff-Baym ansatz instead (#.12), thus the retardation
was considered only partly. Consequently, not the total en-
ergy is conserved but only part of it.

Let us now consider this problem from the point of view
of the generalized kinetic equation investigated in the previ-
ous sections. Now we consider explicit expressions for the
density. In binary collision approximation, we get using
equations of the previous sections,

d®p,d*p,d°p,d°p,
(277)12

d3
n(R,T)zf%fQ(p,R,T)wa

XP' (p1p2|T(E_12+ ie)|pap1)

Eio—E1

X(P1P2| T(Erp—ie)|pp)[Fr— Fol.  (4.18

Now we show that there is an interesting relation betweeVsing (4.11) and the symmetry with respect to the inter-

IB andIR. For this reason we define

5 ):f d3p2d3ﬁd3@J do 2¢
€ (2m)° 27 (E—w)2+62

2e o
X = a2 (Pipal T(w+ie)[papy)l

(E-w)
X(F_1<2_F:fz)-

(4.15

Then we see easily

1B(py)=lim18(py,e),

e—0

and with

changep,,p,<pP1,P2, We have only on-shell quantities

d3
n(R,T)=f—g(2ﬂg fQ(p,R,T)

|

d
x[ £ L(P1P2 T(E)[P2P1) (P12l T4 ) [p2P1)

d®p;,d®p,d°p,dp,. —
: (2;)121 257T5(E12_ =P)

0
— (PPl TAE) IP2Py) 7

X[(P1Pa| TTAE)pap1) ] F 1 (4.19
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The first term on the right hand side may be considered as 9 9
the density of quasiparticles whereas the second is the cor- 0_T<T>: - <9_T<V>’ (4.26
relation part
n(R,T)=n®°R,T)+n®"R,T). (4.20 ie.

Expression4.19 represents a cluster expansion for the den-
sity in binary collision approximation. J 9

Let us now show that the densitfR,T) given by(4.18 () =—2(T+V)=0, (4.27)
or (4.19, respectively, is conserved by the kinetic equation
(3.19. It follows from (3.19 with (3.20 and (3.21) after
integration with respect tp, which means conservation of the total energy.

d —gdgplf R 4 oRT) +no(R.T
(PR T)= [M<(R,T)+n™(R,T)] V. SYSTEM WITH BOUND STATES

dT) (2m) dT dT
&3p &3p The problem of bound states in kinetic theory is the sub-

= 10 LI ject of many papers, e.¢.29,33—36. On the time scale of

(2m) (2m) two-particle scattering processes, bound states are long-

(4.21) living entities. Thus, e.g., one has to account for the bound
state part of the two-particl€ matrix in the kinetic equation.
We recall the expression fa¥ in the binary collision

approximation,

Extracting first-order retardation terms fray we have

d d°p, d*p;
d—_l_n(R,T)=f(27T 3|B+f(277)3|R. (4.22

3 _
It is well known since Boltzmann that the first integral van-  3=(p,0,T)= d p23 d—w<p1p2|TZ(w+w_,T)|p2pl)
ishes. From the explicit expression fidt given by (4.14), it (2m)” 2

follows using relatiorn(4.11) for the connection between off- X (=£i)g=(p,@,T). (5.1)
shell and on-shell quantities that the second integral van-

ishes, too. Thus we have

Bound state contributions are possible if the energy argu-
ment of theT matrix is taken off the energy shell of two free
particles. Thel matrix and the two-particle correlation func-
tion are connected by
This is the conservation law for the thermodynamic quantity
“density of the nonideal system.” The corresponding con- _ _
sideration in a paper recently publishggl] differs from T=(0,T)=iVgw,T)V. (5.2
ours. In[31], the retardation correction was reduced only to
11, and the quantity f(p)[d®p/(27)3] was identified with
the quasiparticle density what is incomplete. i

Lgt uspnow considerythe energy conFs)ervation. This probPart and a bound state pagi,= 975"+ gi5 "™ Itis pos-
lem is more complex. We start with the construction of anSiPle to use a bilinear expansi¢87,3§ for the two-particle
equation for the average ener23 or (3.24). We consider Green’s funqtlon: The time dependence is considered in the
again Eq(4.12, multiply it with the kinetic energy, and take !0C&! approximation,
the trace over 1. Symmetrization with respect to 1 and 2, and
1 and 2 leads to the simple result for the derivation of the

9 nes C‘”—dn—o 4.2
ﬁ(n n r)_ﬁ_ . (3)

The two-particle correlation function can have a scattering

kinetic energyT, gi(w,T)z% | WK (WKINS27m8(w—Ey) (5.9
1% 19 — 1 —
—(T)=———=Tr| |TRE) 2P—(2F<—2F<)}
07T< ) 49T 1 | | E-E 1 with wave function ¥*) and energy eigenvalu& follow-

(4.24 ing from the effective Schdinger equation with the time

The mean potential energy is given by the second and thirgrgument being suppressed,

terms of the right hand side @B8.24). If the self-energy is
expressed in terms Af matrices, we have for the potential [EK—E(pl)—e(pz)]<plp2|1[/'<>—[1—f(pl)—f(pz)]
energy(cf. [32]) o

depldpz

oKy
<V>:<V>HF+;-”12 W<p1p2|v|p2p1><p1p2|‘1’ )=0. (5.9

_ 1 _
|TR(E)|2F’§€F1<2—F1<2)}

4.2 _ L . .
4.29 This equation is not Hermitian but one can construct a bior-
and we get thonormal systeni®) from
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_ dp;dp, o
[Ex— e(p1) — €(p2) 1{p1po| ¥H) — f ﬁ?(plpzlvlpzpﬁ
X[1—f(py)— f(p2)1(P1P2| ¥K)=0 (5.5)
with
(K| UKy = Sy > WKy =1 (5.6

Further it holds that

TK\ — Jk K
(p1p2| ¥*) 1_f(p1)_f(p2)<p1p2|‘1’ ) (5.7
with

,_ [ dpidps
K (2,”_)6

(PaP| V).
(5.8

1-1(pD)—f(p2)

N and Ny are connected byNg—Ng=Fy. Setting
Ny =NgFx, the quantityNy is the distribution function of
the two-particle bound and scattering states, respectively. |

equilibrium, we have

1

Nk =B — 1 -

(5.9
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dp, .
fF(p1)=f(p1)—ijZP (p1po| WIP)

X(WIP| pp )N (P). (5.12

For nonequilibrium systems, the distribution functioffs
andN; are independent. The temporal change of the distri-
bution function of bound states, which is due to three-
particle processes, has to be calculated from a separate ki-
netic equation. Such an equation can be derived from the
second equation of the Martin-Schwinger hierarchy and
reads[36,39,4(Q

d

— tt t
d—TNj(P,T)—IjSCa + 1558 15C (5.13
Thus, in order to fulfill, e.g., the conservation of the total
density, for the self-energy in the zeroth-order terfn a
cluster expansion has to be used which includes also three-
particle processes. The kinetic equation fbrreads then

d
d—TfF(pl,T)ZIB+Ig+IR (5.19
with |g being a Markovian three-particle collision integral
Wmluding reactions. The temporal change of the correspond-
ing densitynz= [[dp/(27)3]fF(p) is given by a rate equa-
tion,

d dp
ﬁnFZJWIg:; al-npnj—,Bl-nF3, (515)

In the kinetic equation, the bound state contribution ap-
pears in the collision integraf, which can be written in the where for the densityn;=f[d P/(27r)3]NJ-(P) of bound

form

1.9 dp,
aT) (2m)3

Jd
X | (ﬁRe(plpz|TR(w)|p2p1)) fif,

lo=e(py) + €(py)

d
_ f %<plp2|T<[(u+ €(p2)1lp2p1) P’ w—e(py)

x(l—fl—fz)]. (5.10

In the second contribution at the right hand side of Eg.
(5.10, the T matrix has to be taken off-shell. Inserting the
bilinear expansion for th&d matrix, we can separate the

bound state part and get

Jd dpz ; ~:
|1=|§catt+ ﬁf (.27)3% <p1p2|‘I’JP><‘I"P|p2p1>Ni(P)
(5.1))

states in levej holds

dnj

a7 (5.19

— 3 — —
—,BJ-n,: _C(jnFnj+Z n,:nﬂ(”—n,:anjj .
j

It follows that the total density=ng+X;n; is conserved.
Note thatng is given by[cf. (3.13)]

d3
ne(RT)= [ 5231 Op.R.T)

d°p;d®p,d®p,dp, —
J' : (2;)121 2|7T5(E12_ Eio)

d -
><| SEL(P1P2 TH(E)[P2P1)]
A Aeym =y 9
X(P1P2| T1A E)|P2p1) — (P1P2l T E)[P2Py) E

X[{P1P2 TEAE)p2pa) 1 f(p1) F(P2). (5.17

The first term on the right hand side may be considered as
the density of quasiparticles whereas the second is the cor-

with j,P being the set of quantum numbers of bound statestelation part(scattering stat¢sThus we have

The terml’,, is the same as in Sec. IV.

We introduce the distribution function of the unbound n(R,T)=n%(R,T)+n®(R,T)+ > ni(R,T).
i

particles by

(5.18
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Expression(5.18 represents a cluster expansion for the den- APPENDIX: T-MATRIX APPROXIMATION

sity in binary collision approximation including bound states.
This type of relation for thermodynamic quantities is well

known in the case of equilibrium quantum statistics

[15,37,41-44 The connection between such thermody- -

namic expressions and E¢.18 becomes obvious if we igfz(t,t’):gfz(t,t’)Jrif dtgR(t,HVan(t,t)

expand the first right hand side contribution &£18), i.e., e

the quasiparticle distributiofi(p?/2m+ Re), with respect w

to R& ", For R& " we use the approximation +i f dtgo(t,HVaL(t,t), (A1)

The two-particle Green’s functiog,, is given in ladder
approximation by

RES M E)=Tr,ReT A E;+ Eo)fo(Ey).  (5.19 o
where the abbreviation
Further, we introduce the partial wave expansion for The

matrix [32]. We get the generalized Beth-Uhlenbeck formula Grt,t)=igT (t,t')g5 (t,t") (A2)
L D d°P y (1) was introduced. Bound states are not considered here. The
n= (277)3f (P)+ 7 (277)3(2/" - 25+1 retarded(advancegltwo-particle function is determined by
B PZ\ 1 (= of P* P? CRIAL RIA . iy | TTaRIA T WRIAT T
X E n En/+m +; . dEn ﬁ‘f—m gy (Lt) =G (t,t") +i dtgry (1, )V, (tt').
n —0
(A3)
dé, (E)
+A1t+4, dE [ (520 If the T matrix is defined by
Here A, , are single-particle energy shifta® is the Bose T=(tt)=iVgR(tt)V, (A4)
function, andé, is the scattering phase shift. In thermody- RA e o RIAL
namic equilibrium, Eq.(5.20 determines completely the Tt ) =Va(t—t")+ivVgy (t,t)V,
thermodynamic behavior of the system in the binary colli- _ _
sion approximation. its equation of motion follows fronfAl),
VI. CONCLUSIONS Tz(t,t’):J dtVGR(t,H) T=(t,t')
The present paper gives a derivation of a rather general
kinetic equation in the framework of Green’s functions tech- * o= T AT
nigues. Starting from the general Kadanoff-Baym equations, + J,wdtvgﬂ(t't)T (L"), (AS)

we did a first-order gradient expansion. In the “Poisson
brackets” containing Rg*, we made an approximation with © o o
respect to the dampin§j leading to a linearized spectral TR/A(t,t’)=V5(t—t’)+f dtVGRALOTRALL),
function having thus a quasiparticle and an off-pole part. -

Within this approximation, the correlation functions have a (AG)
corresponding structure. In order to achieve kinetic equay hich gives
tions, one has to solve the problem to express the correlation

functions in terms of the distribution function. In detail, the w L

differences between the Wigner and the quasiparticle distri- Tz(t,t’)zf dtdt TR, D) G(LHTALL). (A7)
bution function were investigated. -

Explicit collision integrals were formulated in the binary ) ) ) )
collision approximation. Besides the usual Boltzmann inte-The latter equation can be considered as a generalized optical
gral, there occur additional contributions which account fort€orem. . _
retardation effects. In contrast to the usual Markovian IUiS of special interest to have the Fourier transform of
Boltzmann equation, the retardation effects lead to conserva£7)- The two-time quantities iGA7) do not only depend on
tion laws of number density and energy: especially, the lattef1® time differences. Thus, the Fourier transfofm(,T)
goes beyond the kinetic energy. up to first order in the derivatives is given by

Bound states come into the play via the off-shell contri-
butions of the retardation part of the collision integral. We .
want to mention that bound.states do not occur in balances osz(w,T):TR(w,T)gz(w,T)TA(w,T) n !
the usual Boltzmann equation. 2

Rag2 ITA  9TR 9G= A ITR 9G=

ACKNOWLEDGMENT -T - 4 T TJA___ T TA
T dw  Jdw IT T Jdw
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ionisierter Plasmeny. dw aT  aT dw |’
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A further important relation is that for the derivative of which implies
the real part ofT(z). Starting from the expression for the
imaginary partioptical theorem in lowest order with respect

to time derivatives d ] d ]
%Rd:(w—i-le)zalmlz(w—l—le), (A11)

IMT(w+ie,T)=— iE[T(erie,T)—T(cu—ie,T)]

i 0 J
=—|§[T>(w,T)—T<(w,T)] SImF(w+ie)=—-ReF(otie),  (A12)

=T(w+ie,T)ImG(w+ie,T)
XT(w—ieT) (A9) e get for the derivative of the real part

and keeping in mind

J _ IReG . JT _ aT*
P p —ReT(w+ie)=T——T* +i ——ImgT* —iT ImG—— .
—F(otie)=—F(otie) (Al0) ¢ Jo Jo 9o
Jw die ’ (A13)
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